SYLLABUS OF

M. TECH (*Environmental Engineering*) *II YEAR*

(CBCS)

DEPARTMENT OF CIVIL ENGINEERING

INTEGRAL UNIVERSITY LUCKNOW

SYLLABUS AND EVALUATION SCHEME

M.Tech. (Environmental Engineering)

Semester – III

					Period	s	Credits		Evaluat	ion Scher	ne		
S. No.	Course Categor y	Code No	Name of Subject	L	Т	Р	С	-	Continuo Assessme (CA)		Exam ESE	Subject Total	
	-							UE	TA	Total			
1	DE		Elective –II	3	1	-	4	40	20	60	40	100	
2	DE		Elective –III	3	1	-	4	40	20	60	40	100	
3	DE		Elective –IV	3	1	-	4	40	20	60	40	100	
4	DC	CE636	Directed Study	-	-	-	4	-	-	-	100	100	
5	DC	CE699	M.Tech Dissertation	-	-	-	4	-	-	60	40	100	
			Total				20					500	
Seme	ster – IV	T											
	Periods Credits Evaluation Scheme												

					Periods	5	Credits	Evaluation Sche			ne	
S. No.	Course Categor y	Code No	Name of Subject Assessment			EXAM ESE	Subject Total					
								UE	ТА	Total		
1	DC	CE699	M.Tech Dissertation	-	-	-	4	-	-	60	40	100
2	DC	CE699	M.Tech Dissertation	-	-	-	4	-	-	60	40	100
3	DC	CE699	M.Tech Dissertation	-	-	-	4	-	-	60	40	100
4	DC	CE699	M.Tech Dissertation	-	-	-	4	-	-	60	40	100
Total							16					400

TA- Teacher Assessment; **ESE** – End Semester Examination; **CT-** Cumulative Test. Note: Duration of ESE shall be 03 (Three) hours per subject

M.Tech (Environmental Engineering)

List of the Elective Paper:

<u>Elective – I</u>

CE524	Transport of Water and Wastewater
CE525	Industrial Wastewater Management
CE526	Air Pollution Control
CE534	Unit Operations and Processes in Water and Wastewater Treatment

<u>Elective – II</u>

CE621	Air and Water Quality Modeling
CE622	Ecological Engineering
CE623	Principles of Environmental Science

<u>Elective – III</u>

CE626	Fundamentals of Sustainable Development
CE627	Cleaner Production
CE628	Environmental Geotechnology

Elective – IV

CE631	Environmental Engineering Structures
CE632	Surface and Ground Water Modeling
CE633	Water Resources Systems Management

TA- Teacher Assessment; ESE – End Semester Examination; CT- Cumulative Test.

Note : Duration of ESE shall be 03 (Three) hours per subject.

Effective from	Session: 2016-17						
Course Code	CE623	Title of the Course	Principles of Environmental Science	L	Т	Р	С
Year	2 nd	Semester	3 rd	3	1	0	4
Pre-Requisite	NIL	Co-requisite	NIL				
Course Objectives	 Student will be able Student will learn a microorganism and a 	to understand the basics about different microor algae.	of physical science and chemical science. of Environmental Ecology. ganism present in water and M.F techniques to control of different enzymic reactions and the basic Structure of the	-		caused	l by

	Course Outcomes
CO1	Structure of Environment – interaction between biological and chemical components, Basics of hydrosphere, atmosphere,
001	lithosphere, biosphere, scope and importance of environmental science.
CO2	Student will be able to explain the interaction between different species of the environment.
CO3	Student will learn about different microorganisms present in environment and their significance.
CO4	Student will be able to understand the basics of different enzymes reactions and the basic of aquatic chemistry.
CO5	Student will be able to understand the basics of atmospheric chemistry.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Introduction of Environmental Science	Structure of Environment – interaction between biological and chemical components, Basics of hydrosphere, atmosphere, lithosphere, biosphere, scope and importance of	8	CO1
		environmental science		
2	Biological Systems	Plants Animals distribution, interaction, biomass classification, salient features, nutrients and microorganisms, environmental factors.	8	CO2
3	Microbiology of Environment	Microbiology of water – soil – air. Indicator organisms, - coliforms MPN index M.F.technique – Biological indices. Biomonitoring methods – Eutrophication. Biological treatment of wastewater – bacterial reductions.Algae in water supply systems – problems and control. Macrophytes in water bodies –role – control.	8	CO3
4	Chemistry of Aquatics	Common organic reactions, Enzymes and factors influencing enzymatic reactions, Pesticides and syndets Transformation and degradation of pollutants.	8	CO4
5	Atmospheric Chemistry	Structure of the atmosphere, Photochemistry of the atmosphere, ozone layer depletion, Acid rain, Greenhouse gases and global warming.	8	CO5

Reference Books:

Water Supply Engineering: Environmental Engineering v. 1, S. K. Garg, 29th Edition, Khanna Publication, 2013.
Environmental Engineering, Howard S. Peavy, Donald R. Rowe, George Tchobanoglous, 1st Edition 1985, McGraw Hill Education; Reprint 2013.
Gilbert M. Masters, Wendell P. Ela, Introduction to Environmental Engineering and Science, Prentice Hall, 3rd Edition, 2007
K.V.S.G. Murali Krishna, Air Pollution and Control, , Laxmi Publications, 1st Edition, 2017.
StevenC.Chapra, "Surface Water quality modeling", The McGraw-Hill-Companies Inc. 1st Edition, 2008.

e-Learning Source:

https://www.hindawi.com/journals/tswj/2013/231768/ http://envirocomp.org

Course Articulation Matrix: (Mapping of COs with POs and PSOs)

PO-PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO														
CO1	3	0	0	0	0	0	3	0	0	0	0	0	2	3
CO2	3	0	0	0	0	0	3	0	0	0	0	0	2	3
CO3	3	0	0	0	0	0	3	0	0	0	0	0	3	2
CO4	3	0	0	0	0	0	3	0	0	0	0	0	3	2
CO5	3	0	0	0	0	0	3	0	0	0	0	0	2	2

1- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

Effective from Session: 2010	Effective from Session: 2016-17						
Course Code	CE626	Title of the Course	Fundamentals of Sustainable Development	L	Т	Р	С
Year	2 nd	Semester	3 rd	3	1	0	4
Pre-Requisite	NIL	Co-requisite	NIL				
Course Objectives	To educate the students on the basic principles of sustainable development, its national and international aspects.						

	Course Outcomes
CO1	To inculcate the basic concept of Principles of Sustainable Development.
CO2	To impart the knowledge of Indians Judiciary System & Sustainable Development.
CO3	To enhance the fundamentals of Socio-economic Sustainable Development Systems.
CO4	To impart the knowledge of documentation and monitoring of developmental projects.
CO5	To edify the global aspects of sustainable development.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mappe d CO
1	Principles of Sustainable Development	History and emergence of the concept of Sustainable Development, Definitions, Environmental issues and crisis, Resource degradation, greenhouse gases desertification social insecurity Industrialization Globalization and Environment.	8	CO1
2	Indian Judiciary System & Sustainable Development	Sustainable development in Indian scenario, Judicial System in India Induction of sustainability concepts through legal systems concepts principles doctrines case laws.	8	CO2
3	Sustainable Development and International Contribution	Components of sustainability, Complexity of growth and equity, International Summits, Conventions Agreements, Transboundary issues Action plan for implementing sustainable development – Moral obligations and Operational guidelines.	8	CO3
4	Socio-economic Sustainable Development Systems	Socio-economic policies for sustainable development- Strategies for implementing eco development programs – Sustainable development through trade – Economic growth Carrying Capacity – Public participation.	8	CO4
5	Global Aspects of Sustainable Development	Role of developed countries in the sustainable development of developing countries – Demographic dynamics and sustainability – Integrated approach for resource protection and management.	8	CO5
Referen	ce Books:			

Okechukwu Ukaga, Chris Maser, Michael Reichenbach, Sustainable Development, CRC Press, 1 edition, 2010.

Mackenthun, K.M., Basic Concepts in Environmental Management, 2nd edition, CRC Press, 2001.

Yehia Bahei-El-Din, Maguid Hassan, Advanced Technologies for Sustainable Systems, Springer; 1st ed., 2016.

Keekok Lee, Alan Holland, Desmond McNeil, Global Sustainable Development in the Twenty-First Century, Keele University Press (13 June 2000).

e-Learning Source:

https://onlinecourses.nptel.ac.in/noc22_hs61/preview

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)												
PO-PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
СО														
CO1	3	0	0	0	0	0	3	0	0	0	0	0	2	3
CO2	3	0	0	0	0	0	3	0	0	0	0	0	2	3
CO3	3	0	0	0	0	0	3	0	0	0	0	0	3	2
CO4	3	0	0	0	0	0	3	0	0	0	0	0	3	2
CO5	3	0	0	0	0	0	3	0	0	0	0	0	2	2
	•	•	1 L	W Corro	lation () Mode	rata Car	relation · 3-	Substantia	Corrolo	tion	•	-	-

1-Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

Name & Sign of Program Coordinator

Effective from Session: 2016-17									
Course Code	CE633	Title of the Course	Water Resources Systems Management	L	Т	Р	С		
Year	2 nd	Semester	3 rd	3	1	0	4		
Pre-Requisite	NIL	Co-requisite							
Course Objectives	 Student will be a Student will lear Student will be a 	ble understand about th n about droughts and its ble to learn the differen	the planning of reservoir. e quality of water required by various crops and rain was managements. It software used in reservoir operation. otimization and modeling in water recourse system.	ter har	vesting	metho	od.		

	Course Outcomes
CO1	Student will be able to characterize different types of reservoir and dams.
CO2	Student will be able to explain about the quality of water used for various crops production and rain water harvesting methods.
CO3	Student will be able to explain the classification of drought.
CO4	Student will be able to use different software used in water recourse system.
CO5	Student will be able to explain different optimization method in water resource system.

Planning Introduction to systems approach, Linear programming, Problem formulation, Solution by simplex 8 C 2 Quality of Water Quality of Irrigation water, Contaminants and their effects on various crops. Rainwater Harvesting and Management – Different Types and Methods of Harvesting in urban and agricultural areas. 8 C 3 Droughts Draught analysis, NCA classification, Direct and Indirect losses, Drought severity assessment, Drought Monitoring, Drought Management. 8 C 4 Floods Introduction to systems approach, Linear programming, Problem formulation, Solution by simplex method, Application to design and operation of reservoir, Non Linear Programming, Sensitivity 8 C 0ptimization Ex situ and in situ remediation – solidification, bio – remediation, incineration, soil washing, electro kinetics soil heating, verification bio verting. Ground water remediation – nump and	Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mappe d CO
2 Water and Management – Different Types and Methods of Harvesting in urban and agricultural areas. 8 Cl 3 Droughts Draught analysis, NCA classification, Direct and Indirect losses, Drought severity assessment, Drought Monitoring, Drought Management. 8 Cl 4 Floods Introduction to systems approach, Linear programming, Problem formulation, Solution by simplex method, Application to design and operation of reservoir, Non Linear Programming, Sensitivity 8 Cl 5 Optimization Methods in Ex situ and in situ remediation – solidification, bio – remediation, incineration, soil washing, electro kinetics, soil heating, verification, bio venting – Ground water remediation – pump and R 8 Cl	1		planning, water logging, soil salinity, salinity control., Design of Dams, Non gravity dams, Weirs	8	CO1
3 Droughts Drought Monitoring, Drought Management. 8 C 4 Floods Introduction to systems approach, Linear programming, Problem formulation, Solution by simplex method, Application to design and operation of reservoir, Non Linear Programming, Sensitivity 8 C 0 Optimization Methods in Ex situ and in situ remediation – solidification, bio – remediation, incineration, soil washing, electro kinetics, soil heating, verification, bio venting – Ground water remediation – pump and set 8 C	2			8	CO2
4 Floods method, Application to design and operation of reservoir, Non Linear Programming, Sensitivity 8 C 4 Floods method, Application to design and operation of reservoir, Non Linear Programming, Sensitivity 8 C 5 Optimization Methods in Ex situ and in situ remediation – solidification, bio – remediation, incineration, soil washing, electro kinetics, soil heating, verification, bio venting – Ground water remediation – pump and 8 C	3	Droughts		8	CO3
Methods in electro kinetics, soil heating, verification, bio venting – Ground water remediation – pump and 8	4	Floods	method, Application to design and operation of reservoir, Non Linear Programming, Sensitivity	8	CO4
Modelling or flexible liners.	5	Methods in Water System	electro kinetics, soil heating, verification, bio venting – Ground water remediation – pump and treat, air sparging, reactive well- application of geo synthetics in solid waste management – rigid	8	CO5

Dilip Kumar Majumdar, "Irrigation Water Management (Principles & Practices)",Prentice Hall of India (P), Ltd, 2nd edition, 2013 B L Gupta, "Water Resources Systems & Management", Standard Publications, 1st edition, 2008.

Pramod R. Bhave,"Water Resources Systems", Narosa publication, 1st edition, 2011.

Metcalf and Eddy, "Wastewater Engineering: Treatment, and Reuse Recovery", McGraw-Hill Education; 5 edition, 2013.

e-Learning Source:

http://www.nptel.ac.in/courses/105108081/

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)												
PO-PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO														
CO1	1	0	0	2	0	0	2	0	0	0	0	0	2	3
CO2	1	0	0	2	1	0	2	0	0	0	0	1	2	3
CO3	1	0	0	2	0	0	2	0	0	0	0	0	3	2
CO4	1	1	1	2	1	0	2	0	0	0	0	1	3	2
CO5	1	0	0	2	0	0	2	0	0	0	0	0	2	2

1-Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session: 20	Effective from Session: 2016-17										
Course Code	CE654	Title of the Course	Directed Study	L	Т	Р	С				
Year	2 nd	Semester	4 th	0	0	0	4				
Pre-Requisite	NIL	Co-requisite	NIL								
Course Objectives	• To mal	To make learner aware about the latest technology and engineering practices in industries.									

Course Outcomes

CO1 Awareness regarding the latest technology, engineering methodology and practices being used in industries.

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)												
PO-PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
СО	101	102	105	104	105	100	107	100	10)	1010	1011	1012	1501	1502
CO1	3	0	0	2	3	3	0	0	3	3	0	3	1	1

1- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session: 20	Effective from Session: 2019-20									
Course Code	CE699	Title of the Course	M Tech dissertation	L	Т	Р	С			
Year	2 nd	Semester	3 rd and 4 th	0	0	0	20			
Pre-Requisite		Co-requisite								
Course Objectives	 To To To To 	nurture ability to perfo improve critical thinki develop skill to use va develop skill to think c	and problem analysis skill. rm literature review. ng ability for formulation of plan. rious engineering and technological tools. critically on research results. ill for research paper and dissertation.							

	Course Outcomes
CO1	Capability to work independently on a research-based problem.
CO2	Skill to perform review of available literature effectively to present research gap.
CO3	Aptitude to plan methodology for the attainment of various research objectives.
CO4	Competency to apply of various engineering and technological tools to carry research.
CO5	Ability to conclude work using critical thinking.
CO6	Proficiency in preparing presentation and report.

Unit No.	Content of Unit	Contact Hrs.	Mapped CO
	Undergo industrial training in any respective industry in order to get familiar with the latest technology,		
	engineering techniques and practices being used in the industry. Have to absorb some skill from the		CO1, CO2,
1	training identifying the area of improvement. The concepts/skills must be clearly understood and	03hrs	CO1, CO2, CO3, CO4,
	presented by the student. A hard copy of the report should be submitted to the Department after the		CO5 and CO6
	completion of directed study.		

				Course A	Articulat	ion Mat	rix: (Map	ping of (COs with	POs and	PSOs)			
PO- PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
C01	0	0	0	3	3	0	0	3	3	3	0	3	0	3
CO2	0	0	0	3	3	0	0	3	3	3	0	3	0	3
CO3	0	0	0	0	3	0	0	0	3	3	0	3	0	3
CO4	0	0	0	3	3	0	0	0	3	0	0	3	0	3
CO5	0	0	0	3	3	0	0	3	3	3	0	3	0	3
CO6	0	0	0	0	3	0	0	3	3	3	0	3	0	3

1-Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

Name & Sign of Program Coordinator	Sign & Seal of HoD